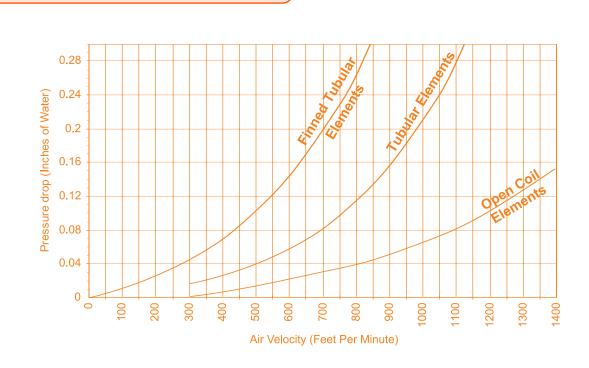
neptronic

(Formulas

Imperial		Metric P = $\frac{Q \times (T^{\circ}2 - T^{\circ}1) \times 1,21}{3600}$	
$kW = \frac{CFM \times (T^{\circ}2 - T^{\circ}1) \times 1.08}{3413}$			
kW : Power in kW CFM : Air volume in cubic feet per minu T°2 : Temperature of air leaving heater T°1 : Temperature of air entering heater	in °F	<i>P : Power in kW</i> Q : Air volume in m³/hr T°2 : Temperature of air I T°1 : Temperature of air o	-
Duct area Imperial S : Surface	r in kW area in square feet area in square feet idth in inches	$\frac{Metric}{KW / m^2} = \frac{P}{S}$ $\frac{Metric}{S}$	P : Power in kW S : Surface area in m ² S : Surface area in m ² W :Duct width in meter
$S = \frac{W \times H}{144} \qquad \begin{array}{c} W : Duct w \\ H : Duct He \end{array}$	eight in inches	S = W x H	H : Duct height in meter
Electric power Single phase $P = V \times I$ ou $P = \frac{V^2}{R}$ Line current Single phase $I = \frac{P}{V}$	$\frac{3 \text{ phase}}{P = V \times I \times 1.7}$ $\frac{3 \text{ phase}}{I = \frac{P}{V \times 1.73}}$	$P = \frac{V^2}{R} \times 1.732$	P : Power in Watts V : Voltage in Volts R : Resistance in Ω (Ohm I : Current in Amps

Conversions

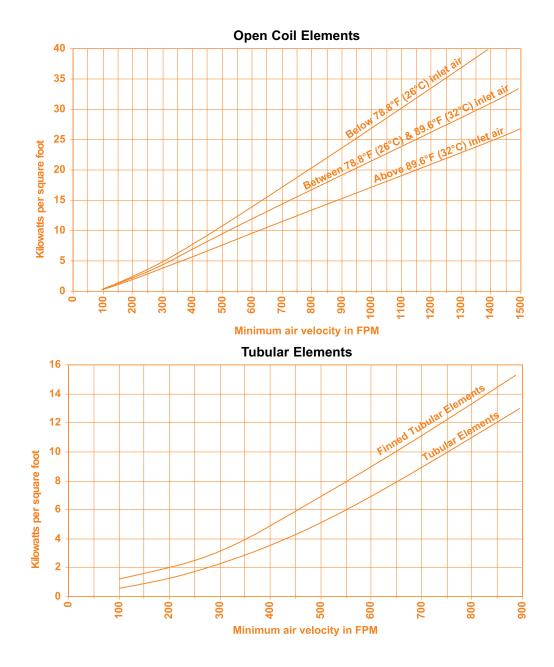
)


∞ F to ∞C ∞C = $\frac{(∞F - 32)}{1.8}$	∞ C to ∞ F ∞F=(1.8 x ∞C) + 32	BTU to kW 1 kW = 3413 BTU/hre	kW to BTU 1 BTU/hre = 0.29307 x 10 ⁻³ kW
mm to inches	Inches to mm	CFM to FPM	FPM to CFM
1 in = 25.4 mm	1 mm = 0.03937 in	$1 \text{ FPM} = \frac{1 \text{ CFM}}{\text{S}}$	1 CFM = 1 FPM x S
		S : Surface area in square feet	

neptronic

Selection Guide

Static Pressure Loss


Element Types	Advantages	Disadvantages
Open Coil	 Excellent heat dissipation Minimal pressure drop Fast response time More kilowatts per sq.ft. Quick delivery 	 Elements in direct contact with air Cannot be installed in humid environments Cannot be installed in dusty environments
Standard Tubular	 Less sensitive to humidity and dust Suited for demanding environments Excellent mechanical resistance Heating element not in direct contact with air 	 Increase in pressure drop Slower response time Less heat dissipation Less kilowatt per sq.ft. Longer delivery
Finned Tubular	 Good heat dissipation Less sensitive to humidity and dust Suited for demanding environments Excellent mechanical resistance Heating element not in direct contact with air 	 Increase in pressure drop Slower response time Less kilowatt per sq.ft. Longer delivery

170712 06006_KS

neptronic

Minimum Air Velocity

